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Theory of Linear Threshold Circuits : important concepts.

Answer question about AND and OR (one of the “100 questions”).
Answer question about XOR (one of the “100 questions”).

Other areas of Research.

Summary.

Problems.

Theory of Linear Threshold Circuits

¢ Boolean functions are mappings from the hypercube {0,1}" to the bi-

nary set {0,1}. For a fixed dimension n there are 22" possible functions.

Construct bf circuits that realize those functions by combining elemen-
tary computing blocks : gates. Given a particular choice of elementary
functions (and some constraints on how to combine them) we get a set of
Boolean functions that it is possible to implement.

“Family” of functions.

Instead of looking at a single mapping defined for a fixed dimension, we
consider a “scalable” function, that is a family of functions or more pre-
cisely a sequence of functions such that for each index ¢ € N f; is a
Boolean function of ¢ variables. For example AN D is the family in which
each function is 1 only at the all-one vertex of the hypercube. Dually, OR
is the family for which each function is 0 only at the all-zero vertex of the
hypercube. On the other hand NOT is a single function of one variable
not a family.

“Function class”.

A class of function is a set of families of functions. For example the
class AON is the set of all families of functions that can be implemented
by a circuit composed of polynomially many AND, OR and NOT gates
(the NOT gates are not included in the count). The key concept here
is : polynomial increase; that for each family there must exist a fixed
polynomial in the dimension ¢ which is an upper bound for the number of
gates used in implementing the functions in the family.

Relation to NP.

Why the polynomial constraint? Because we want to avoid circuits in
which the number of components grow exponentially with the dimension
of the problem. We want to study the power of circuits of polynomial size.



e class LT : same as AON except that the computing elements are different.
An LT circuit is composed of Linear Threshold Gates. The latter output
1 only if a weighted sum of inputs exceeds a fixed threshold (neuron like
behavior).

Do not worry, you don’t need to know all that in order to answer Shuki’s ques-
tions, but you need to be able to understand it. So let us look at the questions

HOWAND, OR question

Show how to compute the Boolean functions AND and OR using a linear thresh-
old element.
AND outputs 1 only if all inputs are 1, that is only if their sum is n. So choose
the weights to be all 2 and the threshold 2n — 1.
OR outputs 0 only if all inputs are 0 so choose the weights to be 2 and the
threshold 1.

XOR question
Prove that XOR cannot be computed by a single linear threshold element.
To remind you : XOR = (sum of inputs)mod2. First show that XOR of two
variables : XOR», cannot be computed by a single threshold element by writing
the inequalities that weights and threshold should satisfy and showing that they
are inconsistent. Next argue that any function within the XOR family can be
reduced to XOR; by setting all except two of its inputs to 0.

Show how to compute XOR using a two-layered circuit of AND, OR and
NOT gates. Is that construction optimal in size?
We have one output, therefore only one gate in the second layer. By the AN D-
OR duality we can assume WLOG (Without Loss Of Generality) that it is an
OR gate. The next step is to note that if there is an OR gate in the first level
it is possible to force the output of the circuit to 1 by setting only one of the
inputs (since (1 + z) +y = 1 for any x and y). That will be inconsistent with
the definition of the XOR function so we can safely assume that all gates in
the first layer are AND gates (possibly with negated inputs but not negated
outputs). We obtain the “mintern” or sum-of-products realization of a Boolean
function. We know the the sum-of-products realization of X OR has 2”1 terms
and that it is minimal (no terms can be removed). Each term rerquires a gate
plus the output gate we get 2"~! + 1 to be the size of the smallest two-layer
AON circuit that implements XOR.

Other Research Areas
Above we were concerned with the size of the circuits. Another way to mea-
sure the efficiency of a computing class is the depth (number of layers or more
precisely length of longest path from input to output). It has been shown that
some families of functions like XOR cannot be computed by AON circuits with
constant depth, while they can be computed by LT circuits of constant depth.

Another area of research is concerned with the size of the weights of LT gates.
If we limit the size of the weights of the elements in an LT ciruit how much



power do we loose? A common approach is to define “small” as polynomially
increasing. A very recent result by Goldmann and Karpinski states that a LT
circuit of depth d is less powerful than a LT circuit with small weights and
depth d + 1.

Summary
To summarize we looked at classes of Boolean functions defined by the circuits
that implement them. Two examples are AON and LT, (polynomial size).
Those can be further refined according to the depth or the size of the weights
for LT circuits. If you have any questions or would like some more information
e-mail me at vincent@cco.

Problems

1. Can you compute
f(l'l y L2y T3, £L'4) = 21T + T3T4 = OR(A.ND(Z’l y 1'2), A.ND(Z'3, £L'4)
with a single LT element? Prove it.

2. Redefine AND :
x; € {0, 1, 2}

AND(zy,z9,...,z,) =1iffall z; > 0
Can you compute it with a single LT element? Proof.

3. Design a 2-layer LT circuit that computes XOR of n variables.

4. Open problem for 30 years : Find the optimal design (in terms of the
number of gates) for the previous problem.

5. Compare two n-bit integers using a single LT element

COMPARISON(X,Y)=1if X >Y



