1 Cable Equation

We model our cable as a transmission line with a characteristic resistance R
(ohms/cm), capacitance C (farads/cm), and cross resistance G (ohms/cm).

(See Figure 1.)
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Figure 1. A Loszsy Cahle

Now, it is a direct result of the diagram in figure 1 that
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Together, these imply that
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This is a wave equation, and has as a solution V' = Ve, Plugging this
solution into the equation for V, we obtain
R R

K2V = —501‘/0 - EKVO (4)

and finally that
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This solution tells us that if an oscillating wave of frequency w is introduced
into the cable, it will propagate down the cable with two limiting conditions.

1. If % > w we have a decaying exponential as growing expo-

nentials are unphysical

2: If % < w, we have a decaying oscillatory wave. This wave

has a length constant of —%g.



Now, given this general behavior of the lossy cable (not including in-
ductances), we will attempt to discern the behavior of the axon, viewed as
a transmission cable. First, we notice that if w < 1 then the behavior is
purely governed by a decaying exponential whose decay constant is }—g. This
might the case if an axon was impaled by a pipette introducing current into
the axon. In order to understand more clearly what this means, we must try
to understand how R and G relate to the cell’s physical characteristics.

First, we note that the axon is a cylinder. Because of this, the membrane
resistance per centimeter is related to the membrane resistance per square

centimeter via the relation
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Figure 2.
MMembrane Resiztance

2mrg - do = G*dz? (6)

where ¢ gives the resistance per square centimeter. The relation for the
intracellular resistance per centimeter squared is given by

7r’r; = R*dx® (7)

R 2g
e \/r:n (8)

So that if we let ¢’ = 2¢ and rr; = 7}, then

yeilding the final relation
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Thus, for low wavelength oscillations, the wave propagates with a length
constant that varies as the square root of both the membrane resistance and
the internal transverse resistance. For high frequencies, the relation is halved,
indicating that the potential will spread more effectively for high frequencies
than for low frequencies.



