Step up a level in abstraction. From now on, we’ll talk about programming
at an algorithmic level, not at a Turing Machine level, but anything we talk
about can be computed by a Turing Machine.

1 P

Suppose you have a problem of size N, for example sort a list of length N,
multiply two matrices of size N by IV, find the maximum of a list of IV numbers,
etc. The problem is said to be in the set P if there is an algorithm, that could be
run on a Turing Machine, to compute a solution to the problem in polynomial
time.

In other words, P is the set of all problems that can be computed by TMs in
polynomaal time.

1.1 Examples

Sorting a list - clearly you could do that in < N? operations. Matrix multi-
plication - can be done in N operations. List maximum - can be done in N
operations.

2 NP

2.1 Boolean Satisfiability

Given a boolean expression FE in N variables, Vi, V5 ... Vy in the Product of
Sums form. Is there a set of inputs Vi, V5 ... Vy such that the expression eval-
uates to True?

Can you think of a way to do this in polynomial time?

Consider a related problem. Suppose someone gives you Vi, V... Vy and
asks “does this work?”

Can you solve this in polynomial time?

2.2 Non-Deterministic Turing Machines

These are completely analogous to NDFSMs. In other words, there can be
multiple possible transitions from one given state to a next state.

2.3 NP

Suppose you have a problem X. If you can make an algorithm of the following
form, then X € NP.

Algorithm:

1) Non-deterministically (i.e. using an NDTM) generate a possible solution
for X.

2) Verify the solution (in polynomial time, using a DTM).



More formally, NP is the set of all languages that can be recognized by an
NDTM.

Equivalently, NP is the set of all languages that have a polynomial verifica-
tion algorithm.

2.3.1 Example: The Travelling Salesman Problem (TSP)

Given a set of N cities and distances between them, is there a circuit of length
L that starts at one city, visits all the cities exactly once, and returns to the
starting city?

TSP € NP — Given a path, it’s easy to check if its length is L.

2.3.2 Example: The Clique Problem

Given a graph with N vertices, is there a clique of size K? (L.e. is there a
subgraph of K vertices which are all connected to each other?)

This problem is in NP — Given a set of K vertices, it’s easy to see if they’re
all connected.

3 NP-completeness

Remark: P C NP

It is not known if NP C P.

There is a set of problems, known as N P-complete problems that have the
property that if any one of them is in P, then all NP problems are in P.

Boolean Satisfiability is one such problem.

The Traveling Salesman Problem is another.

The Clique Problem is a third.

The key point about N P-complete promblems is this: Let X be an N P-
complete problem. Let Y be any problem in NP (not necessarily N P-complete).
Then, you can reduce Y to X in polynomial time.



