
� Finite State Machines �FSMs�

��� What is an FSM�

An FSM is a mathematical model for a particularly simple type of computation�
As we shall see later� it doesn�t capture the full complexity of other models of
computation�

Okay� what�s a model of computation� and why would anyone use one�
A model of computation is a simple mathematical model which retains the

key elements of computation� �It will probably help when we see an example��
It is useful to have simple mathematical models� because they allow us to prove
theorems about what sort of problems can and cannot be solved by computer
�or brain��

Formally� a FSM f has an input alphabet A� For the sake of discussion� let
A � fa�bg�

Inputs to f consist of strings over the alphabet A� Thus	 a� b� aa� ab� ba�
bb� etc� are all legal inputs to f �

For each input I� a string over the alphabet A� the FSM f either accepts or
rejects the input I�

����� Examples

An FSM that accepts all strings over the alphabet f a� b g that end with a�
An FSM that accepts all strings over the alphabet f a� b g that contain at

least one a�
An FSM that accepts all strings over the alphabet f a� b g which contain an

odd number of a�s�
An FSM that accepts all strings over the alphabet f a� b g of the form ab�

abab� ababab� � � �

��� Regular Expressions

The set of languages that are accepted by FSMs are called regular expressions�
Formally� a regular expression is de
ned �recursively� by	
�� The empty string � is a regular expression�
�� For every character c in the input alphabet� c is a regular expression�

� If X and Y are regular expressions� then X OR Y is a regular expression�

�I�e� if you can construct an FSM to accept strings of the form X and you can
construct a FSM to recognize strings of the form Y � then you can construct one
to recognize strings of either form��

�� If X and Y are regular expressions� then the concatanation� XY is also a
regular expression�

��� DFSMs vs� NDFSMs

So far I�ve steered away from introducing too much complexity� When I�ve
referred to FSMs� I�ve really been talking about Deterministic Finite State Ma�

�



chines� DFSMs� There is another class of FSMs called NDFSMs which are
Non�Deterministic Finite State Machines� What�s the di�erence�

For a DFSM� whenever you have an input� you know exactly which transition
to make� i�e� the transition is deterministic� For an NDFSM� there can be
di�erent transitions for the same input� and there can be transitions for no
input� An NDFSM accepts a language if any possible set of transitions accepts
the language�

With the concept of NDFSMs under our belt� we�re ready to ask the tough
question � are some FSMs more powerful than others�

�What do we mean by more powerful� It means that the set of languages
which can be recognized is larger��

How about if we allow multiple stop states� This is not more powerful � we
can add one single stop state� and put an � transition from each previous stop
state to the new stop state�

Now for the ������� question � are NDFSMs more powerful than DFSMs�
Surprisingly� no� It turns out that we can convert any NDFSM of size N into

a DFSM of size � �N � All we have to do is create new states which correspond
to sets of possible states in the NDFSM�

So� DFSMs and NDFSMs are equally powerful� Is that it� Are there prob�
lems they can�t compute�

Actually� yes� Try building an FSM to recognize languages of the form anbn�
It is provable that this is not possible� but I won�t include the proof here� �If
you�re interested� look up The Pumping Lemma��

� Turing Machines

��� What is a Turing Machine�

A di�erent model of computation� and� as we shall see� more powerful�
A Turing machine consists of	
�� An in
nitely long tape� which consists of characters and blanks�
�� A 
nite input alphabet�

� A 
nite output alphabet�
�� A special blank character� usually denoted B�
�� A 
nite set of states�
�� A start state�
�� A �
nite� set of accepting states�
�� Rules of transition� Each rule is of the form	
If you�re in state S and you see input I� write O from the output alphabet�

move f left� right g� and go to state S��

����� Examples

A Turing Machine to recognize strings of the letter a�
A Turing Machine to add one to a number�
A Turing Machine to double a number�

�



��� The Power of Turing Machines

Example	
A Turing Machine to recognize strings of the form anbn�
Turing Machines are more powerful than FSMs�
Formally� every language that can be recognized by an FSM can be recognized

by a TM�

��� The Church�Turing thesis

Every language that can be recognized by any computational model can be rec�

ognized by a TM�

Proof left as an exercise for the reader� 	��

��� Limits of Turing Machines

Can a Turing Machine compute everything�
No� there are some things it can�t compute� But no known computational

model can compute them either�
For example� the Halting Problem	 Given as input some sort of representa�

tion of a Turing Machine and an input to that TM� will the machine halt �either
accept or reject the input� in a 
nite amount of time�

Proof is tricky� If you really want to see it� let me know�
Equivalently� given a computer program �possibly with inputs� and a certain

line in that program� will the program ever execute that line�
There are other things that TMs can�t compute� but none come to mind

right now�





